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Relaxations in lightly crosslinked polymers 
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A simple model for stress relaxation in entangled polymer melts is developed by using 
Gaussian statistical formulae to describe the polymer molecules, and by modelling the 
entanglements as energy barriers that the sliding molecules have to overcome. These entangle- 
ments are assumed to increase in number as deformation proceeds, this increase being related 
to loose topological knots tightening. The predictions of the model are compared with experi- 
ments conducted on plasticized poly(vinyl chloride), and with published data for a styrene- 
butadiene copolymer. In terms of this model, the tightening of entanglements appears to be 
important in polymers in which the intermolecular interactions are heterogeneous due to 
copolymerization or limited crystallinity, but not important in amorphous homopolymers in 
which entanglements are expected to be more homogeneous. 

1. I n t r o d u c t i o n  
Ferry [1] systematically analysed the mechanical 
behaviour of polymeric materials and classified the 
behaviour into a number of different regions, depend- 
ing on the temperature and the time-scale of measure- 
ment. At temperatures above the glass transition 
all polymers exhibit a "Plateau '' region where the 
modulus is relatively independent of time or fre- 
quency, the extent of this plateau region depending 
significantly on the molecular weight of the polymer. 
The presence of a sufficient number of permanent 
chemical crosslinks to form a complete network 
broadens the plateau region. 

The commonly accepted explanation for the mech- 
anical behaviour of an uncrosslinked polymer in the 
plateau region is that the polymer chains undergo 
relaxation due to the slipping of entanglements 
between adjacent molecules [1, 2], these entanglements 
arising from topological constraints imposed on the 
network by interpenetration of the chain molecules. 

The concept of reptation of an individual polymer 
chain [3, 4] within a tube defined by the neighbouring 
molecules has been introduced to model this process 
in a quantifiable way. The relationship between the 
tube model and the entanglement model has been 
outlined by Donth [5], who allows the cross-section of 
the tubes to fluctuate due to movement of the neigh- 
bouring molecules. Essentially, the most constricted 
portions of the tube correspond to entanglements. In 
this model the entanglements have two distinct modes 
of movement: 

(i) they can distort with the movement of the net- 
work, not altering the topology of the constraints, and 

(ii) they can slide along chains when two entangled 
chains are simultaneously in a configuration to permit 
slippage. The entanglement is a ring surrounding two 
molecules which, if momentarily parallel, will allow 
the ring to "slip" along the two chains. The portrayal 
of an entanglement as a slipping link was introduced 
[6] to model complicated entanglements for analysis, 
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where both chains were free separately to slip through 
the link. 

In general, relaxations will occur if chain slippage 
occurs, although it seems to be more likely that chains 
will slip through entanglements in opposite directions, 
or that only one chain will slip rather than the 
entanglement slipping along two chains in the same 
direction as in Donth's model. A similar idea was used 
by Chompff and Duiser [7] who modelled an entangle- 
ment between two molecules by allowing one molecule 
to be completely free of the entanglement, while the 
other sliding molecule had a "slow point", or a viscous 
drag at the entanglement site. 

In the following, a simple model is presented which 
allows relaxation due to an individual molecule slip- 
ping through an entanglement. Only the two entangle- 
ments nearest the loose end (L) are considered, one 
being fixed (F) and the other allowing slip (E). In 
many cases, a number of entanglements would be 
expected along a polymer chain, and the polymer 
chain would contract toward its centre through these 
entanglements if the entanglements were moved from 
an equilibrium separation due to some deformation 
process. Doi [8] gives a good account of this process 
for stress relaxation, but as simple considerations in 
the next section show, the rate of relaxation will be 
primarily determined by the rate of slippage of the 
molecule through the entanglements at the extremities 
of the molecule. That is, the rate of slippage of the 
loose or dangling ends is the important relaxation 
process. 

The model also introduces the concept of tightening 
of the entanglements as deformation proceeds, by 
assuming that the actual number of entanglements 
increases with deformation. This knotting is treated 
here in an empirical fashion, but the predictions of this 
model are shown to be consistent with experiment. In 
general, it is expected that this process of entangle- 
ment tightening would be more important in lightly 
crosslinked polymer systems, where there are insuf- 
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ficient crosslinks to form a complete network, but the 
crosslinks that are present are sufficient in number to 
pull the entangled ends into a tight knot. 

The model is treated in an elementary fashion, the 
main aim being to show the basic implications of the 
assumption of entanglement tightening. To this end, a 
number of simplifying assumptions are made, and so 
any predictions are essentially qualitative. 

2. Theory 
2.1. A simple model for relaxation and 

entanglement tightening 
Consider the loose end of a chain in a polymer melt 
which is under no external tractions, and denote the 
free end of the chain by L. 

At equilibrium, the chain end could be considered 
to have no permanent entanglements, although at any 
time it will in general be involved in some loose 
topological knots with other molecules. 

On the application of a sufficiently rapid defor- 
mation the loose knots would be expected to tighten 
and form entanglements, in general the number and 
"tightness" of these knots increasing with the extent of 
the deformation. This would be particularly true if one 
part of the molecule was relatively firmly attached 
to surrounding molecules, as in a small crystalline 
region, or at a crosslink. For the moment we will 
assume that the knots tighten at the onset of deforma- 
tion, and will allow for the deformation dependence of 
the tightening later. 

If we assume that the entanglements form at con- 
stant contour length intervals along the molecule, the 
initial relaxation process can be modelled by consider- 
ing the entanglement (denoted E) closest to the loose 
end as capable of slipping, and the next entanglement 
(denoted F) along the chain as fixed or permanent (see 
Fig. 1). This is because the relaxation of the molecule 
through the entanglements will be governed by the 
rate of slip through the endmost entanglement, where 
the chain section of one side of the entanglement 
(Section FE) will be under tension because both ends 
are constrained, whereas the loose end (Section EL) 
will (ideally) be free of tension. The molecule will relax 
through entanglements flanked by other entangle- 
ments much less rapidly than through the end entang- 
lement, because the chain section on either side will be 
under tension. For this reason, we consider only the 
relaxation of the molecule through the last (end) 
entanglement E, adjacent to the loose end. 

L 

Figure 1 The fundamental  unit of  relaxation assumed in the model, 
with E being the endmost  entanglement on the molecule, F the next 
entanglement (assumed fixed) and L the loose end of  the polymer 
chain. Relaxation will occur by the slip o f  links through E from EL 
to FE. 

If we suppose that at the stage of entanglement 
formation the section FE can be regarded as a 
Gaussian chain, then 

IFEI 2 -= ro e = no 12 (1) 

at the stage of the entanglements forming, where no is 
the number of random links along FE and l is the 
length of each link. 

By introducing rectangular coordinates with origin 
at F, and axes parallel to the external principal strain 
axes, we have 

r02 = x~ + y02 + z~ (2) 

where E has initial co-ordinates (x0, Y0, z0). 
Under further deformation, we assume that points 

E (at (x, y, z)) and F (at the origin) move relative to 
each other as if embedded in an elastic continuum, 
that is, in an affine manner. However, during this 
subsequent deformation, the molecule is able to slip 
through E in a time-dependent way which we will 
picture as individual links having to surmount a 
potential barrier. If we define r at any stage of the 
deformation by 

r 2 __= IFEi2 = x 2 + y2 + z 2 (3) 

then r can be expressed in terms of the principal 
extension ratios 2~, 22 and 2 3 by 

r2 2 ~2 2 2 2 2 = x0Xl + y022 + z023 (4) 

If  we now imagine our molecule to be representative 
of all such relaxing loose ends, and suppose that 

xoe = yoe = z~ = ~rol 2 = ½nol2  (5) 

then Equation 4 can be simplified giving 

r 2 = 1no12 (2~ + 2~ + 2~) (6) 

The entropy of the chain segment FE will be taken 
to be the Gaussian expression (for example, Treloar 
[9]) 

s = c - -  3 k r 2 / 2 n l  2 (7) 

where s = entropy of chain, c = arbitrary constant, 
k = Bottzmann's constant and n = n ( t )  is the num- 
ber of links (of length l) in FE. 

If  no slipping occurs at E, then n = no, but here we 
are going to allow n, in general, to change due to 
relaxation of the molecule by slipping through the 
entanglement. 

The change in entropy of such a chain from the 
onset of the formation of the entanglement to the 
current state of deformation will be given by 

o r  

As = ~ no/ 

As -- 2kl- ~ ( 2 2 +  21+  2 ~ ) -  3] (9) 

If  there are ArE such representative entangled 
molecules per unit volume, then the total strain energy 
stored per unit volume (the strain energy function) is 
given by 
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If  the entanglements do not slip (and so n = no), 
Equation 10 is identical to the familiar result obtained 
in the normal theory of rubber elasticity. 

However, if n = n(t), then the strain energy stored 
in such a slipping network will be a function of time, 
leading to relaxation and viscoelastic behaviour. 

Equation 10 applies to the situation where NE slip- 
ping entanglements form at the onset of deformation, 
with subsequent slipping occurring. However, the 
number of tight entanglements would be expected to 
increase with the amount of deformation. If we simply 
assume that NE increases with the strain energy, we 
can write empirically 

( I - - 3 y  
NE = No + Nl \Ik -- 3J for I < Ik (11) 

and 

NE = No + N~ f o r I ~ > I k  

where No and NI are constants, q is an empirical con- 
stant (of order unity), I is the first strain invariant 
defined by 

I = 21 z + 2~ + 22 (12) 

arid Ik is a critical value of I such that when I > Ik all 
knots have tightened. 

According to Equation 11, NE increases with the 
amount of deformation, and so as the later entangle- 
ments form they will undergo progressively less 
subsequent deformation than those formed earlier. 
Accordingly, Equation 10 should allow for this by 
dividing each extension ratio by the corresponding 
extension ratio at the time of entanglement tightening, 
and integrating over these values to find the total 
strain energy. The complications introduced by this 
are not trivial, and here it will be assumed that the 
form of Equation 10 is essentially correct, but that the 
no values are expected to vary somewhat to allow for 
the different deformations at which the entanglements 
tighten. This alters the single relaxation-time model 
outlined here to one in which a spread of relaxation 
times is expected. 

If, in addition to a network of entanglements a 
material has some form of permanent crosslinking, 
Equation 10 could be extended to allow for this by 
assuming the networks (permanent and entanglement) 
to be in parallel, giving the strfiin energy function 

× (21 + + - 3 (Ug + U p ) ]  

where Np is the number of molecular chains per unit 
volume in the pe1:manent network. 

In order to characterize the slip of the chain through 
the entanglement E, let us suppose that each link has 
to surmount an energy barrier in passing from one 
side of E to the other. To simplify the argument, allow 
the energy barrier to be symmetric if no net chain 
tension is applied at E. If  no force is applied by the 
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Figure 2 The symmetrical potential energy barrier to link slippage 
assumed to exist at E, showing the reduction in the barrier to slip 
from Segment EL to Segment FE caused by the tensile force f on 
Segment FE. 

chain at E the probability of a link jumping from FE 
to EL would be equal to the probability of a link 
jumping in the opposite direction (see Fig. 2). 

However, due to the constraint of both F and E 
being fixed (except for relative motion due to external 
constraints) there must be a tension along FE given by 

3kTr 
f = nl 2 (14) 

(see, for example, Treloar [9] p. 57). 
This tension will not be matched by the segment EL 

due to the lack of constraint on L, and so a net tension 
will act on the links at E, biasing the potential barrier 
and inducing a net flow of links into Region FE. 

If  the potential barrier opposing jumps from FE is 
increased by an amount Xf, and the potential barrier 
opposing jumps from EL is decreased by Xf, the 
probability of a jump from EL to FE will be given by 

~bELFE = K e x p (  AG.~TXf ) - - -  (15) 

where AG is the unperturbed potential barrier, K is a 
dimensionless constant and X is a constant with 
dimensions of length. 

The probability of a jump occurring in the reverse 
direction will be 

~bFEEL --~- K e x p (  A G + X  9 k T  (16) 

If  v is the frequency with which jumps occur, then 
the rate of change of the number of links in Region FE 
is given by 

dn 
- v ( ELFE --  '/'FEEL) dt 

= 2Kvexp _ AG sinh 

If  we assume Xf/kT ~ 1, using Equations 6 and 14 
this can be written as 

n d f n ' ~  = (21+ 2 2 +  22) '/2 
(18) 

no dt knoJ z 

where z is a temperature-dependent relaxation time 
given by 



(3n~)1/2l ( A G )  
r - 6Kv x e X p  ~-~ (19) 

Equation 18 assumes that the entanglement forms 
at the onset of deformation, and as discussed above 
this is not strictly correct (see paragraph following 
Equation 12). Again it will be assumed that Equation 
18 correctly describes the form of the change in n, but 
that no (and so r) can assume a range of values. 
Equations 10 or 13 and 18 jointly define the way in 
which the strain energy relaxes for a given deforma- 
tion geometry. In the following section the solution 
for axisymmetric stress relaxation will be obtained. 

2.2. Axisymmetric stress relaxation 
For an axisymmetric deformation along the x axis at 
constant volume, we have 

),2 = 23 = 2i -l/2 (20) 

For a stress relaxation experiment, suppose that 

21 = 1 for t < 0 

and 

2~ = 2 for t ~> 0 (21) 

where 2 is a constant. 
Substitution of Equations 20 and 21 in Equation 18 

gives 

n d n = _1 22 + for t ~> 0 (22) 
no dt r 

Integration of Equation 22 gives 

= 1 + 2 22 + - (23) 

It should be noted here that Equation 23 is valid 
only if n < 2n0, because when n = 2n0 the entangle- 
ment E will have been "slipped through". A more 
detailed model should take account of  this and allow 
for the shuffling of the links through the entanglement 
F. This would lead to a sequence of increasing relaxa- 
tion times, and so the model is only applicable for 
times such that 

3 
t < to = ~ 1/z (24) 

Equation 24 simply ensures that n is less than 2n 0. In 
the following this condition is not strictly adhered to, 
as the same qualitative predictions are valid for the 
larger relaxation times expected when the critical time 
tc defined by Equation 24 is exceeded. 

If  the axisymmetric deformation is produced by one 
non-zero tensile force, the nominal stress F will be 
given by differentiation of Equation 10, giving 

E, n n 
Here we are ignoring the dependence of  ArE and n on 

2, and are calculating the force at a particular time, 
regarding NE and n as constants. 

Substitution of Equation 23 gives the reduced nomi- 

nal stressfR as 

F / I  ( ~)1/21t/2 
fR -- = N z k T  1 + 2  t- 2 2 +  

2 1 r 
22 

(26) 

In this expression, ArE is a function of 2 which can 
be found by substituting Equations 20 and 21 in 
Equation 1 l, resulting in 

and 

NE = N o + N ,  
( 2)q 22+~-3 

2 for 2 < 2k 

NE = No + NI for 2 >~ 2k (27) 

where 2 k is the critical value of 2 corresponding to the 
critical value I k defined by Equations 11 and 12. 

The extension to a material with a permanently 
linked network in parallel with the entanglement net- 
work can be found by using Equation 13 instead of  
Equation 10, giving an extra additive term NpkT on 
the right-hand side of Equation 26. 

2.3. Predictions of model 
Equations 26 and 27 taken together predict explicitly 
the time and extension dependence of the stress relaxa- 
tion expected for a material which is undergoing 
relaxation due to the slipping of entanglements. 
Recalling Equation 19, it can be seen that the tem- 
perature dependence is also explicitly given, although 
that will not be pursued further here. 

Firstly, if 2 t> 2k the predicted form of the relaxa- 
tion curve involves only one strain-dependent par- 
ameter, the effective relaxation time ~'EFF defined by 

TEFF =-- "~/I2 (22 "q- 2)1/2] (28) 

That is, for increasing elongation the relaxation 
should occur more rapidly. Secondly, if 2 < 2k, 

although the above strain dependence of the relaxa- 
tion time still applies (Equation 28), the expression in 
the numerator of Equation 26 is also dependent on 
strain, resulting in a strain-dependent asymptote as t 
approaches zero on the log t axis. 

The predictions of the model are illustrated in Fig. 
3, where (arbitrarily) the constants have been chosen 
to have the values NokT = N~kT = 0.5; 2k = 1.4; 

= 2; a n d q  = 1. 
Isochronous Mooney-Rivlin plots taken from Fig. 

3 are given in Fig. 4, wherefR is plotted against 1/2 for 
the given values of t. Fig. 5 gives the isochronous plots 
obtained if 2k is taken to be 1.1, all other parameters 
being the same as assumed before. 

It can be seen that the expected isochrones have a 
maximum when 2 = 2k,  and decrease with increasing 
2 for 2 > 2k. In the 2 > 2 k region the curves are 
nearly linear up to quite high values of 2. In the 
following some new experimental results are reported 
which show a maximum in a Mooney-Rivlin plot, 
whereas previously reported isochrones have not 
demonstrated this non-monotonic behaviour. 
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Figure 3 Stress-relaxation curves of reduced stress fR against log 
(time) predicted by the model for the indicated values of 2, assuming 
NokT = NIkT = 0.5, r = 2, q = l and 2 k = 1.4. 
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Figure 5 Isochronous Mooney-Rivlin plots for the indicated values 
of time, assuming NokT = NtkT = 0.5, r = 2, q = 1 and 2 k = 
1.1. 

3. C o m p a r i s o n  w i t h  e x p e r i m e n t  
3.1. Mater ia l  
Simple stress-relaxation tests on plasticized poly(vinyl 
chloride) (PPVC) were conducted in an Instron 
machine at a constant room temperature of  21 ° C. The 
PVC was a commercial sheet material of  about  30% 
plasticizer content obtained from Nylex Australia, 
known as "U-V stabilized sheet". Test specimens were 
stamped from the sheet, giving specimens of 55 m m  
gauge length and 6 m m  by 1 m m  cross-section. Initial 
loading was at 50 m m m i n  -~ and the final extension 
was measured by using a travelling microscope to 
measure the distance between two marks  on the gauge 
length of  the specimen. The material was analysed 
using gel permeation chromatography;  the number- 
average molecular weight was found to be 8.09 x 104 
and the weight-average molecular weight was found to 
be 1.80 × 105 . 

3 .2 .  Resul ts  
In Fig. 6 the results are plotted giving reduced stress 
as a function of  log (time) for various extensions. I t  
can be seen that the curves "cross over" and do not 
display monotonic shift behaviour with increasing 2. 
This behaviour is made more clear in Fig. 7, where 
several isochronous curves taken f rom the data of  Fig. 
6 are given. These isochrones resemble in form those 
predicted by the above model, and suggest that for the 
plasticized PVC used here 2k "~ 1.25. Using this value 
for 2k, the predicted curves using Equations 26 and 27 

0.8 
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00 0.2 0./+ 0.6 0.8 1,0 1/) ̀ + 

Figure 4 Isochronous Mooney-Rivlin plots offR against 1/2 taken 
from the curves of Fig. 3 for the times shown. 
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have been plotted in Fig. 7 assuming the values of  No, 
Nt, q and r as shown in the figure caption and includ- 
ing an additional N p k T  term in Equation 26 as dis- 
cussed previously. 

In Fig. 8, isochronous data obtained from stress- 
relaxation curves published by Kusamizu and Nino- 
miya [10] for relaxation of a styrene-butadiene 
copolymer (SBR) have been plotted, indicating similar 
behaviour to that predicted by the model, with 2k 
1.4. (The SBR data have also been published in Ferry 
[1], p. 427). The predicted curves using Equations 26 
and 27 have been plotted on Fig.8, using the assumed 
values of  the material parameters given in the figure 
caption. 

Further data on the stress relaxation of uncross- 
linked polymers have been obtained by Ferry and 
co-workers [11, 12] where, unlike the abovementioned 
results, the Mooney-Rivl in  plot is linear over a range 
of  2 values 2 /> 2 >/ 1.15. If, for these two materials, 
2k was less than 1.15, the results would be consistent 
with the above model, the linear plots being obtained 
from the region where 2 > 2k. (The materials studied 
were 1,2 polybutadiene [11] and polyisobutylene [12].) 

4.  D i s c u s s i o n  
4.1. The  kno t t i ng  e longa t i on ,  2k 
It  can be seen that the predictions of  the model are 
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Figure 6 Stress-relaxation curves of reduced stress fR against log 
(time) for the various values of 2, for plasticized poly(vinyl chloride) 
(PPVC) at 21°C. 2 = (o) 1.10, (13) 1.14, (o) 1.25, (zx) 1.37, (v) 
1.43, (x) 1.5, (+) 2.0. 
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Figure 7 Isochronous Mooney-Rivlin plots taken from the data of 
Fig. 6 for 10 sec (solid points) and 103 sec (open circles) compared 
with the predictions of the model (solid line) with NokT = 8 MPa, 
NzkT = 10MPa, NpkT = 2.5MPa, T = 2, 2 k = 1.25 and assum- 

ing q = 1. 

qualitatively consistent with the experimental results 
as shown in Figs. 7 and 8, and with the results of Ferry 
and co-workers [11, 12] if suitable values of 2k are 
assumed for each material. 

Although little information is available on the 
styrene-butadiene copolymer, it is likely that it con- 
tains some regions of strong molecular interaction 
due to the styrene portions of the copolymer, and 
that weaker entanglement interactions occur on the 
rubbery butadiene segments. A similar heterogeneous 
arrangement of interactions is also expected in plas- 
ticized PVC due to the small amount (--~ 5%) of crys- 
tallinity that is thought to exist [13, 14] in this poly- 
mer. Such a system of heterogeneous intermolecular 
interactions is likely to be one in which loose topologi- 
cal knots get tightened by deformation as the strongly 

300 

200 

100 
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! 

0~ 0.5 1/~ 1,0 

Figure 8 Isochronous Mooney-Rivlin plots taken from stress- 
relaxation data for a styrene-butadiene copolymer [10] for 0.6sec 
(solid points) and 6 sec (open circles) compared with the predictions 
of the model with NokT = 220kPa, NIkT = 80kPa, NpkT = O, 
z = 1, 2 k = 1,4 and assuming q = 1. These data have been 
reduced to 80 ° C. 

interacting portions corresponding to F in Fig. 1 
("F-links") exert forces on the more loosely inter- 
acting chain segments. The amount of deformation 
required to tighten these knots completely will essen- 
tially depend inversely on the separation of these 
F-links, indicating that the SBR has fewer of these 
than the PPVC. 

On the other hand, the two polymers studied by 
Ferry and co-workers do not display the behaviour 
interpreted above as the tightening of entanglements. 
No mention of any crystalline phase is made in the 
descriptions of the polymers [11, 12], and so it is to be 
expected that the intermolecular interactions in these 
polymers are relatively homogeneous. In terms of the 
model outlined here, the interpretation of the results is 
that the tightening of the knots occurs at very small 
elongations as each entanglement is equivalent, and 
there are none which pull on, and tighten, the neigh- 
bouring entanglements. 

4.2. Entanglement density NE 
The entanglement density NE was assumed empirically 
to increase with deformation as defined by Equation 
27. Regarding the three empirical constants in this 
equation, if we assume that q = 1 then the values of 
No k T and NlkT that roughly fit the experimental data 
are both of order ~ 10 MPa for the PPVC and less 
than 1 MPa for the SBR. In the model, No and N1 are 
the number of tight entanglements per unit volume 
at the start of deformation and introduced after an 
elongation of )~k, respectively, and the above values 
correspond satisfactorily with the entangled com- 
pliances calculated for a wide variety of polymers (see 
Ferry [1], p. 406). Such order-of-magnitude agree- 
ment is perhaps all that can be expected of such an 
elementary model. 

4.3. The crosslink density Np 
In fitting the theoretical curves to the experimental 
data it was necessary to assume for PPVC that the 
permanent crosslink density N v was non-zero to 
obtain the rough agreement shown in Fig. 7, whereas 
the reasonable agreement displayed in Fig. 8 for SBR 
was obtained by taking Np = 0. 

This observation could be taken as indicating that 
PPVC can be considered as a viscoelastic solid in that 
the stress will not eventually relax to zero, whereas the 
SBR may perhaps be a viscoelastic fluid in the general 
sense as defined by Ferry [1]. 

4.4. The relaxation time 
The simple model outlined above is essentially a single 
relaxation-time model, except that some spread of 
relaxation times about this single relaxation time is 
expected due to the anticipated spread in no values 
ignored in order to simplify the analysis. The defor- 
mation-dependent relaxation time is given jointly by 
Equations 28 and 19 in terms of the model, but the 
resultant expression is obviously an oversimplification 
for a number of reasons. Firstly, in any real system 
some degree of polydispersity is expected, and entang- 
lements would anyway be expected to form at random 
separations along a polymer chain. One way to allow 
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for this would be again to allow a spread of relaxation 
times. Secondly, the restriction defined by Equation 
25 does not allow for more than one entanglement on 
a given polymer chain to be slipped through. If, as 
seems likely, there are a number of entanglements 
along a given chain, then the molecule will have to slip 
through each in turn. When the endmost entangle- 
ment has been slipped through, slippage through the 
next entanglement along the chain will become the 
dominant relaxation process, and this in general will 
have a larger value of no and so a larger relaxation 
time. Following this idea will lead to a sequence of 
increasing relaxation times depending on the number 
of entanglements per molecule and their separation. 
For simplicity, this will not be included here. 

4.5. The model 
In the simple model outlined above the connection 
between macroscopic deformation and the deforma- 
tion of a single chain, as expressed by Equation 4, 
was made by assuming the individual chain to be 
"typical". A more realistic approach would be to 
consider an arrangement of three chains aligned with 
the principal axes of deformation [15] or a four-chain 
model [16] with four slipping and tightening entangle- 
ments arranged tetrahedrally around a fixed entangle- 
ment. The added complexity introduced by either of 
these approaches is probably not warranted due to the 
simple nature of other aspects of the model. 

A more serious objection could be raised to the use 
of Gaussian chain statistics to obtain Equation 14, 
which gives the force on the chain segment FE in 
Fig. 1. Implicit in this formula are the assumptions 
that the chain segment FE is large enough, and that 
the extension of the chain segments is not too large, for 
random-chain statistics to apply. This latter objection 
could be met by using Langevin statistics to obtain an 
equation to replace Equation 14, for cases where the 
restriction that r ~ nl does not apply, but again the 
added complexity that this would introduce is not 
warranted. 

An estimate of the length of the chain segment FE 
can be made in terms of the model by assuming some 
order-of-magnitude values for the dimensions of the 
molecule. Assuming a cylindrical chain segment of n 
links each of length l and cross-sectional radius r, the 
number of these per unit volume will be given by 

N = nr2n l (29) 

where • is a constant (~ ~< 1) expressing the frac- 
tional occupied volume in the polymer melt. If we take 
N k T  = 1 MPa, and suppose that r --- l = 5 × 10 -~° 
m, then assuming ~ --- 1 and T = 300 K, we have 
n ~ 11. This indicates that in the case of PPVC the 

model is only marginally appropriate in that the values 
of N k T  needed to fit Equation 26 to the data in Fig. 
7 are larger than assumed here, and so the predicted 
value of n would be small. This makes the lack of 
agreement between theory and experiment in Fig. 7 
more understandable, but the PPVC data still exhibits 
the characteristic peak (associated here with entangle- 
ment tightening) in the Mooney-Rivlin plot. In the 
case of SBR the above rough calculation indicates in 
terms of the model that the chains are quite long, and 
the application of Gaussian statistics is indeed appro- 
priate. The agreement shown in Fig. 8 between theory 
and experiment is satisfactory, considering the 
elementary nature of the model and its assumptions. 

5. Conc lus ions  
A simple theory of entanglements in polymer melts 
tightening during deformation, and of stress relaxa- 
tion due to slippage through such entanglements, has 
been developed and the predictions of this theory have 
been compared with experiment. 

For polymer melts in which the intermolecular 
interactions are expected to be heterogeneous, the 
stress relaxation isochrones display a distinct maxi- 
mum in a Mooney-Rivlin plot, in agreement with the 
theory, whereas this maximum is not observed in 
results for materials which may have homogeneous 
molecular interactions. 
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